

 Uses a heap as its data structure

 In-place sorting algorithm – memory efficient

 Time complexity – O(n log(n))

 A heap is also known as a priority queue and
can be represented by a binary tree with the
following properties:

 Structure property: A heap is a completely filled
binary tree with the exception of the bottom row,
which is filled from left to right

 Heap Order property: For every node x in the
heap, the parent of x greater than or equal to the value
of x.

 (known as a maxHeap).

53

44 25

15 21 13 18

3 12 5 7

a heap

Step 1. Build Heap – O(n)

 - Build binary tree taking N items as input, ensuring
the heap structure property is held, in other words,
build a complete binary tree.

 - Heapify the binary tree making sure the binary tree
satisfies the Heap Order property.

Step 2. Perform n deleteMax operations – O(log(n))

 - Delete the maximum element in the heap – which is
the root node, and place this element at the end of the
sorted array.

 For speed and efficiency we can represent the heap with an array.
Place the root at array index 1, its left child at index 2, its right child
at index 3, so on and so forth…

53 44 25 15 21 13 18 3 12 5 7

53

44 25

15 21 13 18

3 12 5 7

 0 1 2 3 4 5 6 7 8 9 10 11

53

44 25

15 21 13 18

3 12 5 7

 0 1 2 3 4 5 6 7 8 9 10 11

53 44 25 15 21 13 18 3 12 5 7

For any node i, the following formulas apply:

The index of its parent = i / 2

Index of left child = 2 * i

Index of right child = 2 * i + 1

 Start with unordered array of data

Array representation:

Binary tree representation:

21 15 25 3 5 12 7 19 45 2 9

21

15 25

3 5 12 7

19 45 2 9

 Heapify the binary tree -

21

15 25

3 5 12 7

19 45 2 9

21

15 25

3 9 12 7

19 45 2 5

21

15 25

45 9 12 7

19 3 2 5

21

15 25

45 9 12 7

19 3 2 5

21

45 25

19 9 12 7

15 3 2 5

45

21 25

19 9 12 7

15 3 2 5

45 21 25 19 9 12 7 15 3 2 5

45

21 25

19 9 12 7

15 3 2 5

25

21 12

19 9 5 7

15 3 2

25 21 12 19 9 5 7 15 3 2 45

25

21 12

19 9 5 7

15 3 2

25 21 12 19 9 5 7 15 3 2 45

21

19 12

15 9 5 7

2 3

21 19 12 15 9 5 7 2 3 25 45

21

19 12

15 9 5 7

2 3

21 19 12 15 9 5 7 2 3 25 45

19

15 12

3 9 5 7

2

19 15 12 3 9 5 7 2 21 25 45

19

15 12

3 9 5 7

2

19 15 12 3 9 5 7 2 21 25 45

15

9 12

3 2 5 7

15 9 12 3 2 5 7 19 21 25 45

15

9 12

3 2 5 7

15 9 12 3 2 5 7 19 21 25 45

12

9 7

3 2 5

12 9 7 3 2 5 15 19 21 25 45

12

9 7

3 2 5

12 9 7 3 2 5 15 19 21 25 45

9

5 7

3 2

9 5 7 3 2 12 15 19 21 25 45

…and finally

2

2 3 5 7 9 12 15 19 21 25 45

 1st Step- Build heap, O(n) time complexity

 2nd Step – perform n deleteMax operations, each with
O(log(n)) time complexity

 total time complexity = O(n log(n))

 Pros: fast sorting algorithm, memory efficient,
especially for very large values of n.

 Cons: slower of the O(n log(n)) sorting algorithms

